CHW 261: Logic Design

Instructors:

Prof. Hala Zayedhttp://www.bu.edu.eg/staff/halazayed14Dr. Ahmed Shalabyhttp://bu.edu.eg/staff/ahmedshalaby14#

Digital Fundamentals

CHAPTER 1 Digital Concepts

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Digital and Analog Quantities

Digital and Analog Quantities

Analog quantities have continuous values

Digital quantities have discrete sets of values

Digital System (Why) Analog vs. Digital

Most natural quantities (such as temperature, pressure, light intensity, ...) are **analog** quantities that vary continuously.

Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.

Digital System (Example)

Digital and Analog Quantities

Types of electronic devices or instruments:

- Analog
- Digital
- Combination analog and digital

- The conventional numbering system uses ten digits: 0,1,2,3,4,5,6,7,8, and 9.
- The binary numbering system uses just two digits: **0** and **1**.
- They can also be called LOW and HIGH, where LOW = 0 and HIGH = 1

Transistors: nMOS

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

Copyright ©2006 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

The binary numbering system uses just two digits: **0** and **1**.

Binary values are also represented by voltage levels

They can also be called LOW and HIGH, where LOW = 0 and HIGH = 1

Major parts of a digital pulse

- Base line
- Amplitude
- Rise time (t_r)
- Pulse width (t_w)
- Fall time (t_f)

- t_w = pulse width
- T = period of the waveform
- f = frequency of the waveform

$$f = \frac{1}{T}$$

The duty cycle of a binary waveform is defined as:

Duty cycle =
$$\left(\frac{t_w}{T}\right)$$
100%

Timing Diagrams

A **timing diagram** (or **waveform diagram**) is used to show the relationship between two or more digital waveforms.

Serial and Parallel Data

Data can be transmitted by either serial transfer or parallel transfer.

- Question 1: How long will it take to transmit an 8-bit binary string using serial transmission if the clock frequency is 100 MHz?
- Question 2: How long will it take to transmit an 8-bit binary string using parallel transmission if the clock frequency is 100 MHz?

There are only three basic logic operations:

The NOT operation

- When the input is LOW, the output is HIGH
- When the input is HIGH, the output is LOW

The output logic level is always opposite the input logic level.

- The AND operation
 - When any input is LOW, the output is LOW
 - When both inputs are HIGH, the output is HIGH

- The OR operation
 - When any input is
 HIGH, the output is
 HIGH
 - When both inputs are LOW, the output is LOW

- Comparison function
- Arithmetic functions
- Code conversion function
- Encoding function
- Decoding function
- Data selection function
- Data storage function
- Counting function

Comparison function

 Compares two binary values and determines whether or not they are equal

Arithmetic functions

- Perform the basic arithmetic operations on two binary values:
 - Addition
 - Subtraction of two values
 - Multiplication
 - Division

Code conversion function

 Converts, or translates, information from one code format to another

Encoding function

 Converts non-binary information into a binary code

Decoding function

 Converts binary-coded information into a non-binary form

Data selection function

- Multiplexer (mux)
 - Switches digital data from any number of input sources to a single output line
- Demultiplexer (demux)
 - switches digital data from a single input to any number of output lines

Data storage function

- Retains binary data for a period of time
 - Flip-flops (bistable multvibrators)
 - Registers
 - Semiconductor memories
 - Magnetic-media memories
 - Optical-media memories

Counting function

 Generates sequences of digital pulse that represent numbers

Fixed-Function Integrated Circuits

IC package styles

- Dual in-line package (DIP)
- Small-outline IC (SOIC)
- Flat pack (FP)
- Plastic-leaded chip carrier (PLCC)
- Leadless-ceramic chip carrier (LCCC)

• Dual in-line package (DIP)

Small-outline IC (SOIC)

• Flat pack (FP)

Plastic-leaded chip carrier (PLCC)

Leadless-ceramic chip carrier (LCCC)

Programmable Logic Devices (PLDs) are chips with a large number of gates that can be configured with software to perform a specific logic function. Major types of PLDs are:

SPLD (Simple PLD): the earliest type of programmable logic, used for smaller circuits with a limited number of gates.

CPLD (Complex PLD): contain multiple SPLD arrays and inter-connection arrays on a single chip.

FPGA (Field Programmable Gate Array): a more flexible arrangement than CPLDs, with much larger capacity.

- SPLD
 - PAL (programmable array logic)
 - GAL (generic array logic)
 - PLA (programmable logic array)
 - PROM (programmable read-only memory)

PALs and GALs

SPLDs contain arrays of gates. Two important kinds of SPLD are **PALs** (Programmable Array Logic) and **GALs** (Generic Array Logic). A typical array consists of a matrix of conductors connected in rows and columns to AND gates.

PALs

PALs are programmed with a specialized programmer that blows selected internal fuse links. After blowing the fuses, the array represents the Boolean logic expression for the desired circuit.

PALs have a one-time programmable (OTP) array, in which fuses are permanently blown, creating the product terms in an AND array.

GALs

The GAL (Generic Array Logic) is similar to a PAL but **can be reprogrammed**. For this reason, they are useful for new product development (prototyping) and for training purposes. $A = \overline{A} = B = \overline{B}$

All rights reserved.

Test and Measurement Instruments

DC Power Supply

Analog Oscilloscope Digital Oscilloscope

Test and Measurement Instruments

Digital Multimeter

Floyd Digital Fundamentals, 9/e

Logic Probe, Pulser, and Current Probe

Home Work

- 7400 Series and 4000 Series
 - A popular series of TTL chips is the 7400 series
 - A popular series of CMOS chips is the 4000 series

Technology Magazines

https://spectrum.ieee.org/

https://www.technologyreview.com/